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Based on the concept of splitting by physical processes and the use of N-shaped orthogonal grids the authors 

synthesize a computational algorithm for numerical modeling of detached incompressible viscous flow along 

a two-dimensional body of  intricate shape in the presence of a mobile shield. 

1. Development of multiprofile software for numerical modeling of plane flow along bodies of intricate shape, 

including bodies near a mobile shield, is a complex problem. Its components are synthesis of a finite-volume 

algorithm based on the concept of splitting by physical processes, construction of a rational grid structure on the 

basis of choosing the topology of near-orthogonal computational grids, and thorough testing of the created 

computational system in solving a set of now-classical problems of laminar incompressible viscous flow across a 

cylinder and turbulent flow along a two-dimensional profile of a Volkswagen automobile. The quest for ensuring 

the versatility of a software tool when bodies of arbitrary geometry with a rather narrow clearance between them 

and a mobile wall are considered has motivated the choice of N-grids. That is the reason that one of the central 

problems in this work was synthesis of an acceptable efficient algorithm for generating an orthogonaI grid of the 

indicated type and detailed comparative analysis of results of calculations on this kind of grid and calculated data 

obtained on other grids and by other numerical methods as well as available experimental data on local and integral 

characteristics of detached flows. 

2. The methodology of numerical modeling of two-dimensional uniform incompressible viscous flow along 

a body of arbitrary geometry is based on solving, within the framework of splitting by physical processes, the initial 

system of Navier-Stokes equations for a laminar regime of flow and the system of Reynolds equations that is closed 

using a two-parameter dissipative turbulence model for a turbulent regime of flow [ 1 ]. The problem of flow along 

a body in the presence of a mobile shield is considered in a steady-state formulation with allowance for separation 

of the flow in a wide Reynolds-number range. The turbulent character of flow with developed circulation zones for 

high Reynolds numbers is modeled within the framework of a modified phenomenological approach that is 

associated with introduction of vortex viscosity and allows for the effect of the curvature of the current lines on the 

turbulence characteristics, following the concept of Leschziner and Rodi. The use of a high-Reynolds version of the 

modified model is combined with employment of the Launder and Spalding method of wall functions. 

The system of initial equations in divergent form is written in curvilinear coordinates matched with the 

contour of the body in the flow for increments in dependent variables that include Cartesian velocity components, 

pressure, and characterics of turbulence (the kigridic energy of turbulent pulsations and the rate of turbulent- 

energy dissipation). The control differential equations are discretized using the finite-volume method on an N-type 

orthogonal grid generated on the basis of an elliptical procedure. 

The proposed computational model, which is based on the use of the concept of splitting by physical 

processes in the form of a SIMPLEC pressure-correction procedure, is realized in an aggregate of the computational 

units that form it. Characteristic features of this iteration algorithm are determination, on the "predictor" step, of 

the preliminary velocity components for "frozen" pressure fields and turbulence characteristics and pressure 
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correction on the basis of solving the continuity equation with subsequent velocity-field corrections and calculation 

of the characteristics of turbulence and vortex viscosity. 

The choice of a centered pattern with tying of dependent variables to the center of a computational cell is 

dictated by the quest for simplification of the computational algorithm and reduction of the number of computational 
operations. Pressure-field monotonization, required in this approach, is effected on the basis of the Rhi-Chou 

methodology [1 ]. 
High stability of the computational procedure is ensured by using, for discretization of the convective terms 

of the equations in the implicit side, one-sided counterflow differences, by damping nonphysical oscillations by 

introduction of artificial diffusion, and by employing pseudotime stabilizing terms. The method of incomplete matrix 

factorization for solving the system of nonlinear algebraic equations improves the computational efficiency of the 

computational algorithm, too. The acceptable accuracy of the procedure is determined by discretization of the 

explicit side of the equations by the scheme of the second order of approximation, including the convective terms 
of the equations by Leonard's quadratic counterflow scheme. This methodology makes it possible to minimize the 
influence of "numerical"-diffusion effects, which are especially substantial when detached flows are calculated. 

This efficient computational technology was evaluated on a set of various test problems, including problems 
that have experimental analogs. Included in the solved problems were well-known problems of circulation motion 

of a liquid in a cavity and of turbulent detached flow in a channel with a sudden divergence, problems of external 
flow along bodies of various geometry: longitudinal and transverse cylinders, a sphere, a composition of a disk and 

a cylinder, etc. It should be noted that, in all the enumerated cases, use was made of canonical grid structures 

(Cartesian or polar grids). The concept of construction, structure, and characteristic features of the developed 

computational codes turn out to be comparable to similar characteristics of well-known packages of applied 
programs: PHOENICS, FLOW3D, FIRE, and others. An important advantage of the developed strategy is its 

generalization to the case of three-dimensional turbulent flows [2 I. 
3. Let us consider in greater detail the problem of generation of orthogonal computational grids. An 

orthogonal coordinate system, as is known, can be obtained from the solution of Laplace's equations [3 ], which, 

in the transformed plane, have the form 

a s  

- -  = 0 ,  i = x , y .  (I) 

Boundary conditions that ensure orthogonality at the boundaries of the calculation domain are represented 

( q  " r,1) Jr = 0 ,  (2) 

where r is the position vector. 
The grid generator, in addition to the problem of finding the coordinates of the grid nodes proper, solves 

the problem of controlling the coordinate lines, too. Here we indicate two variants of the solution of this problem. 
In the first variant, changes are introduced in the formulation of the boundary conditions. Thus, boundary 

conditions (2) are stated only at two adjacent boundaries and are fixed at two other boundaries, i.e., 

I (7) i = It2 ; (3a) 

( r~-rq)  l r  3 = 0 ,  ( r ~ . r q ) [ r  4 = 0 .  (3b) 

It can be shown that, in this case, the orthogonality condition r~.r~ = 0 will be satisfied both within the calculation 
domain and at the boundaries FI and /'2. This method of control enables us to draw coordinate lines through 

prescribed points on the two adjacent boundaries. On the other two boundaries, the coordinates of the nodes are 

calculated from condition (3b). 
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Fig. 1. Fragments of O- and N-type orthogonal computational grids near a 

cylinder (a, b) and a profile of intricate geometry near a mobile shield (the 

leading part of the profile (c) and the trailing part of the profile (d)). 

Another approach is associated with prescribing preliminary conditions when differential equation (1) is 
solved. In this case, the position of the coordinate lines can be controlled using the step of the grid in the curvilinear 
coordinates ~ i  and Ar/y and the distribution of the Lam6 coefficients. In many works (for example, [4, 5 ]), the 

step of the grid is assumed to be constant and equal to unity, and different approximations for the control function 

hi/h2 =f(~, r/) are introduced. But since this function itself is determined in terms of dependent variables, it cannot 
be prescribed in advance without extending the system of calculation equations. 

Therefore, in the present work, a different method of control is chosen within the framework of this 

approach. Thus, the quantity hi~h2 is assumed to be constant in the entire calculation domain. To find it, we 

employ a Cauchy-Riemann- type condition in the form 

1 0 x  1 0 y .  1 0 y  1 0 x  
h-? = ' h--? - 0 ,7  ' 

from which the following calculation expression is constructed: 

- H -- (xr/ + Yr/) d~  

hi (x~ + ,ha* 
(4) 

The system of equations (1) and (4) with boundary conditions (2) is solved numerically by the method of 

longitudinal-transverse running. A finite-difference analog of differential equation (I) is obtained by the reference- 

volume method on a five-point grid pattern. 
As a result we have 

a p f p =  a e f  E +  a w f  W+ aNf  N +  a s f  S,  f =  x , y ,  (5) 

where 

a t - -  , a w - -  , a N =  , a s =  
E W N 3-~ s' 

ap = a E + a W+ a N +  a S. 
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Fig. 2. Comparison of isotach patterns of the longitudinal u (a, b) and 

transverse v (c, d) velocity components for incompressible viscous flow across 
a cylinder at Re -- 40, calculated on N- (a, c) and O-type (b, d) grids: a, b) 
the lines are drawn with a step of 0.05 from -0 .1  to 1.15; c, d) the same, 

from -0 .55  to 0.55. 
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Fig. 3. Comparison of distributions of the pressure C o (a) and friction C/ (b)  
factors over the surface of a cylinder in a uniform incompressible viscous flow 
at Re = 40:1  and 2) calculated results of this work, N- and O-type grids, 

respectively; 3 and 4) calculated results of Kawaguti and experimental results 
of Toma [9 ]; 5) interval of experimental values of the bottom-pressure 

coefficient [ 10 ]. 

The computational procedure consists of two steps. In the first step, we find the coordinates of the internal 

points from finite-difference relations (5). The position of the nodes on the boundary is taken from the previous 

iteration. Next, the coordinates of the boundary nodes are calculated from condition (2). 
Figure lb  presents a fragment of an orthogonal grid around a circular cylinder. Here, a combined method 

of control is realized. On the internal contour, four critical points that divide the entire calculation domain into 

eight subdomains are fixed. In each subdomain, its own value of hi~h2 is calculated, which is subsequently used 
in determining the coefficients of Eq. (5). Within the limits of a subdomain, its own distribution law for the steps 
of the grid is prescribed, which is determined in a numerical experiment from the condition of an appropriate degree 

of bunching of the step of the grid at the surface of the body in the flow. 
4. The methodological part of the investigation contains a comparative analysis of results of calculations of 

laminar incompressible viscous flow across a cylinder for a Reynolds number Re = 40, performed on grids of 

different types by the presented procedure, and available calculated and experimental data [6-10 ]. The cylinder 
diameter is chosen as the characteristic dimension, and the incoming-flow velocity is taken as the velocity scale. 

See Figs. 2 and 3 and Table 1 for materials of the analysis. 
Numerical modeling of detached flow across a cylinder is performed on an O-type analytical grid that 

contains 60 × 220 computational cells, distributed with bunching toward the cylinder surface, and on elliptical 
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TABLE 1. Comparison of Calculated Results for Laminar Incompressible Viscous Flow along a Cylinder at a Reynolds 

Number Re -- 40 

No. of column *) I 2 4 5 

Type of grid N-type O-type 

Number of cells 93 x 93 121 x 121 60 x 220 62 x 100 3000-4000 

0.406 

0.606 

1.012 

0.387 

0.596 

0.983 

Cxp 

Cxd 

Cxp + Cxd 

0.642 

1.653 

1.139 

-0 .500 

2.237 

0.659 

1.642 

1.109 

-0.488 

2.075 

Cxf 

Cx 

Cpf 

Cpd 

X~ 

*)In columns 1-3, there are results of the 

[7 ], respectively. 

0.398 

0.583 

0.981 

0.517 

1.498 

1.146 

-0.473 

2.23 

D 

0.981 

0.5163 

1.497 

1.13 

-0.484 

2.33 

D 

0.976 

0.549 

1.5025 

present work, and in 4 and 5 the data are taken from [6 ] and 

TABLE 2. Calculated Results for Integral Characteristics of Turbulent Flow along a Two-Dimensional Model of a 

Volkswagen Automobile at a Reynolds Number Re = 107 

C xp C xd C x/ 

-0.022 0.099 0.0099 

Cx Call 

0.087 -0.139 

Umin kmax 

-0.106 0.0588 

Xs 

0.449 

N-type grids that are constructed by the described procedure and contain 93 × 93 and 121 x 121 computational 

cells. Fragments of the indicated grids are given in Fig. 1. 

As follows from a comparison of the fields of local characteristics of flow across a cylinder (Fig. 2) the flow 

patterns obtained in calculations on rather detailed grids of different types are practically the same. Nonetheless, 

the surface distributions of the pressure and friction factors (Fig. 3) reveal differences in the character of the curves 

due to the topological features of the N-type curvilinear grid. These differences, naturally, are more pronounced 

in the behavior of the factor C I, where quantitative discrepancies are noticeable for the chosen Reynolds number. 

For local force loads, the pressure spike of circuit origin is very small in length and magnitude. Therefore its 

contribution to the imbalance of the integral force load turns out to be extremely insignificant. 

The obtained calculated results on Cp are in very close agreement with each other and with results of 

Kawaguti's calculation and Toma's experimental data on the portion of accelerating and retarded flows near the 

cylinder. These is disagreement only in the bottom region. However, the more detailed experimental data of 

Williamson and Roshko [8 ] provide an idea of the existing spread in the results of measurements, in which the 

obtained calculated characteristics fit. 

Data for integral characteristics of flow across a cylinder calculated with the use of various algorithms and 

grids are summarized in Table 1. For comparison, we give results obtained on the basis of solving Navier-Stokes 

equations that are written in transformed variables (vorticity-current function). In [6 ], a finite-difference algo- 

rithm is synthesized using Arakawa's scheme of the second and fourth order of approximation. Consideration was 

given to a very detailed computational grid that contained 62 × 100 nodes. An earlier work [7 ] was performed on 

the basis of employing central finite differences, and the chosen number of computational nodes of the grid was 
quite large (3000-4000). In addition to the given results, we should note that, according to Apelt's experimenttal 

data from monograph [9 ], for Re = 40, Cx = 1.513, while, according to the experimental data of [10], the length 

of the circulation zone behind the cylinder is X s = 2.2. 
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Fig. 4. Field patterns (a-e) of the characteristics of turbulent flow along a 

profile of intricate geometry near a mobile shield for Re -- 107 and comparison 

of calculated and experimental distributions of the static-pressure coefficient 

Cp along the chord of the profile: a) current lines that correspond to the values 

of the current functions: -0.03, -0.01, -0.05, -0.001, 0, 0.001, 0.005, 0.01, 

0.03, 0.1, 0.2, 0.3; b) profiles of the longitudinal velocity component; c) 

isobars with a 0.05 step from -0.75 to 0.5; d) pattern of isolines of the 

turbulent-pulsation kigridic energy k, drawn with a 0.005 step from 0.005 to 

0.05; e) the same, for the vortex viscosity vt, drawn with a 0.0005 step from 

a background value of 0.0015 to 0.0025; the calculated values of Cp, 
constructed along the chord (curves l in Fig. 4f and g), refer to the upper 

and lower sides of the profile, respectively; the experimental data (points 2) 

for the comparison are taken from [11, 12 ]. 

From consideration of the data of Table I and the distributions of the pressure factor Cp in Fig. 3a it follows 

that all the integral or local characteristics presented, except for the friction resistance Cxl, are in good agreement 

with each other and with the available experimental data. This means that the results of numerical modeling of 

laminar flow across a cylinder depend weakly on the type of computational grid. At the same time, we cannot but 
note the effect of the topology of the grid on the distribution of the surface friction factor, which causes an over 

estimation (up to 10%) of the friction resistance. 

5. Some results of calculation of turbulent steady flow along a profile of intricate geometry that is a two- 
dimensional model of a Volkswagen automobile in the vicinity of a mobile shield for Re -- 107 are summed up in 

Fig. 4 and Table 2. To solve the problem of two-dimensional flow along the outline of the automobile, we chose a 

near-orthogonal N-type grid (with a rectangular cut at the center of a curvilinear calculation domain). Figure lc 

and d presents fragments of the grid in the front (c) and rear (d) parts of the automobile. The calculation domain 

is divided into 150 x 60 nonuniformly distributed cells. The automobile outline accounts for 15 cells in the 

transverse direction and 81 cells in the longitudinal direction. The entrance boundary is prescribed at a distance 

of 7.5 of the chord of the automobile profile, chosen as the characteristic dimension in this problem. The exit 

boundary is located at a distance of 5.6 from the profile. The vertical dimension of the calculation domain is 3.39. 

The clearance is 0.06. The thickness of the automobile profile is 0.3. A uniform flow that models flow in the working 

portion of a subsonic wind tunnel is prescribed at the entrance boundary; "mild" boundary conditions are stated 
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at the upper and exit boundaries while conditions lhat correspond to the mobile shield are prescribed at the lower 

boundary, i.e., the solid wall moves with the velocity of the incoming flow. 

From the patterns of developed turbulent flow along the profile presented in Fig. 4a-e it can be seen that 

the detached flow in the near wake has the structure of two large-scale vortices. The velocity of the return flow in 

the wake turns out to be of the order of 0.1. The separation point of the flow, similarly to [11 ], is located on the 

diffuser upper part of the outline, and the velocities in the separation zone adjacent to the windshield are very 

small. Examination of the velocity profiles in the near wake points to the occurrence of a jet flow in the direction 

toward the automobile with its subsequent spreading over the frame. 

The dimensions of the separation zone behind the automobile are comparatively small and are of the order 

of 0.45 in the longitudinal direction. The velocity profile in the wake behind the body has a characteristic minimum; 

here, two shear flows develop: a wall jet near the mobile shield and detached shear flow in a curvilinear channel 

behind the backward step. No separation of the flow at the mobile shield behind the profile, similarly to what was 

shown in [11 ], was detected. The pressure field has a strong inhomogeneity in the upper part of the outline with 

a pronounced rarefaction in the convex part. The zone of increased pressure is correctly reproduced in front of the 

concavity in the vicinity of the windshield. A very thin and nonextended separation zone forms there. In the gap 

between the automobile and the shield, a channel-type accelerating flow with a pressure drop along the channel 

length is realized. The wake region, conversely, is characterized by the isobaricity that is inherent in jet flows. The 

field of the kigridic turbulence energy has two zones of maxima in the wake behind the automobile that are located 

in shear regions of the flow. At the same time, the vortex viscosity is maximum at the center of the jet that acts on 

the rear part of the automobile. 
Figure 4f and g compares calculated profiles of the pressure factor Cp on the upper and lower sides of the 

outline with experimental data taken from [11, 12 ]. The very close agreement of the results presented indicates 

the acceptability of the developed system for engineering practice. Attention is drawn to the fact that the profile 

resistance of the body turns out to be negative while the normal force presses it against the mobile shield. 

The authors express their thanks to Professor A. S. Ginevskii for useful discussions of the problem. 
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N O T A T I O N  

x and y, longitudinal and transverse Cartesian coordinates; ~ and r/, transformed curvilinear coordinates 
t . , 

matched with the outline of the body in the flow; ht and h2, Lame coefficients; s, relative distance along the outline 

of the body; A/j and At/, dimensions of the computational cell in curvilinear coordinates; 6~ and 6r/, distances 

between the nodes of the computational grid in the ~ and z/ directions, respectively; u and v, Cartesian velocity 

components; p and p, density of the fluid and excess pressure referred to the doubled velocity head; k and e, energy 

of turbulent pulsations and its dissipation rate; v, kinematic-viscosity factor of the fluid; Cv, pressure factor; Cf, 

friction factor; Re, Reynolds number; ~p, current function; Cx, Cxp, Cxd, CxI, and Cxn, drag coefficient, coefficients 

of profile, bottom, and frictional resistance, and coefficient of normal force; Xs, length of the separation zone in 

the near wake behind the body. Subscripts: i and j, numbers of the grid lines; t, turbulent; f, parameter at the 

leading critical point of the body; d, parameter in the bottom region behind the body; max and min, maximum 

and minimum. 
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